# Oceanographic Connectivity and Population Modeling

Matching Empirical Data to Predictive Needs

Will White and Loo Botsford September 16, 2008 El Segundo, CA

RESOURCES
LEGACY FUND
FOUNDATION



















# Empirical estimates of

- local retention
- long-distance dispersal





# Techniques:

- Population genetics
- Geochemical tags
- Circulation models

# **Population Genetics**

#### Advantage:

Estimate number of migrants (larvae) exchanged between populations each generation



#### Pitfalls:



- -Traditional F<sub>ST</sub> measures: integrates over time, not necessarily contemporary connectivity patterns (microsats > mtDNA)
- Newer Bayesian assignment tests are better
- Best at finding **breaks** in connectivity
- Estimates total number of migrants (Nm)
  - need to know local production to get dispersal rate per larvae (m)



### Otolith / Statolith geochemistry

#### Advantage:

Estimates contemporary connectivity patterns





#### Pitfalls:

- Does geochemistry vary at the appropriate spatial scale?
- Estimates total number of migrants (Nm)
  - need to know local production to get dispersal rate per larvae (*m*)







Uncertainty in dispersal patterns comparable to uncertainty in fishery stock status (FLEP, CRT)

